科技一站

 找回密码
 立即注册
查看: 146|回复: 1

“你”是否了解2021年互联网十大前沿技术趋势呢?

[复制链接]

1

主题

2

帖子

3

积分

新手上路

Rank: 1

积分
3
发表于 2022-9-23 15:54:24 | 显示全部楼层 |阅读模式
简介:2020 年国内外大势的风云变幻,势必给 IT 领域带来巨大影响,改变了行业、产业的技术发展走向;然而也会有些技术发展,遵循自身轨迹前行,不受外界纷扰。

1、架构&云计算

2020 年,微服务领域出现了一个新词汇:“宏服务”(Macro Services)由Uber团队提出。宏服务其实并不是一个全新的架构,而是一种在单体和微服务间取得平衡的理念。
目前,微服务的发展增加了系统的复杂性,微服务日趋细化、复用率达到顶峰,服务之间的关系变得愈加复杂,维护成本增加。在这种情况下,技术人员提出了“宏服务”,它只是个整体式程序,其中所有业务服务都作为单个程序包部署在应用程序服务器中,并共享同一个数据库(物理上和逻辑上)。它不太复杂,服务之间奉行紧密耦合。
2021 年,化繁为简仍然会是微服务的重点课题。


2、云原生不再以资源为导向,而是以应用为导向

2010 年,Paul Fremantle 在博客中首次提出了“云原生”的概念。经过十年发展,DevOps、容器、微服务等技术飞速发展,云原生已经被成功应用到企业核心业务中,并成为了企业业务创新的重要推动力。
云原生指的是一个灵活的工程团队,遵循敏捷的研发原则,使用高度自动化的研发工具,开发专门基于并部署在云基础设施上的应用,以满足快速变化的客户需求。这些应用采用自动化的,可扩展的,和高可用的架构。这个工程团队通过高效的云计算现网的运维来提供这一应用服务,并且根据线上反馈对服务进行不断地改进。
云原生的应用在上线到云上之后,工程团队会不断关注应用的运行情况。对这些应用进行运维管理,实时监测,解决随时出现的各种线上问题。云原生的研发团队还会收集应用的线上数据作为反馈,不断地进行分析并且基于这些反馈对应用进行持续的改进。


3、边缘计算将迎来规模化商业落地

边缘计算最初被称为移动边缘计算(MEC)。欧洲电信标准协会(ETSI)对 MEC 的定义如下:
移动边缘计算在移动网络的边缘、无线接入网(RAN)的内部以及移动用户的近处提供了一个 IT 服务环 境以及云计算能力。从技术架构来看,边缘计算产业联盟(ECC)和工业互联网产业联盟(AII)联合发布了边缘计算参考架构 3.0。整个系统分为边缘现场三层,边缘计算位于云和现场层之间,边缘层向下支持各种现场设备的接入,向上可以与云端对接。其中边缘层主要由边缘节点和边缘管理器组成,边缘节点是硬件实体,是承载边缘计算业务的核心,一般具有计算、网络和存储资源,而边缘管理器的核心是软件,主要功能是对边缘节点进行统一管理。


边缘计算的发展前景广阔,被称为“人工智能的最后一公里”,但它还在发展初期,有许多问题需要解决,如:框架的选用,通讯设备和协议的规范,终端设备的标识,更低延迟的需求等。随着 IPv6 及 5G 技术的普及,其中的一些问题将被解决,虽然这是一段不小的历程。相较于云计算,边缘计算有以下这些优势。
优势一:更多的节点来负载流量,使得数据传输速度更快。优势二:更靠近终端设备,传输更安全,数据处理更即时。优势三:更分散的节点相比云计算故障所产生的影响更小,还解决了设备散热问题。
从落地场景来看,目前边缘计算的落地主要集中在能源互联网、工业互联网、AR/VR/ 高清视频、云游戏、无人驾驶、智慧门店、医疗保健等。
大部分厂商的边缘计算产品种类不少,落地案例也有,那么是什么原因导致边缘计算的规模化商业落地发生在 2021 年之后呢?技术专家们的观点比较一致:“边缘计算的规模化商业落地还在等一个信号,这个信号就是 5G!”
4、前端

2014 年,研究机构 Forrester Research 正式提出了“低代码 / 零代码”的概念。顾名思义,低代码就是开发者写很少的代码就可以快速开发应用,扩展更多功能。相比于传统的软件开发工具和技术,低代码的技术门槛更低,开发效率更高;相比于其他快速开发工具,低代码的扩展性更好。
传统上,开发移动应用程序是一个巨大的挑战,因为它涉及许多复杂性的问题。但是,随着低代码和零代码移动应用程序开发平台的发展,开发功能全面的下一代移动应用程序的任务变得比以往任何时候都更加简单。从中小型企业到大型企业,任何人都可以在短短几分钟内快速设计、构建、定制和部署业务应用程序,而这只需编写少量代码,甚至不需要编写任何代码。
这些平台的特性和定制能力可能会略有不同,但是这些工具的主要功能是相同的。您可以利用这些低代码和零代码移动应用程序开发平台,在没有大量技术专长的情况下做出出色的移动应用程序。


5、大数据&人工智能

随着 IT 基础设施加速往云上迁移,云原生正在成为新一代数据架构的主流标准。越来越多企业客户从 On-Premise 的数仓方案转向基于云(包含公有云和私有云)的解决方案,这种趋势在美国toB市场已经被广泛接受,在国内toB 市场也方兴未艾。新的一年大数据与云的融合还会继续加深,大数据领域将加速拥抱“融合”或“一体化”演进的新方向。
实际上,不管是今年最受关注的热议话题“湖仓一体”,还是已经得到业界广泛认可的“流批一体”,都是“融合”演进思路的阶段性产物。其本质是为了降低大数据分析的技术复杂度和成本,同时满足对性能和易用性的更高要求。
20年的大数据发展史,让我们看到了随着数据湖与云数据仓库的不断创新与发展,也让我们看到了以湖仓一体化为核心的技术架构,对微博大数据的价值发挥带来了更为重要的现实意义。
特别是处于云原生+大数据的时代,湖仓一体更能综合发挥出数据湖的灵活性与生态丰富性,以及云数据仓库的成长性与企业级能力。
湖仓一体的能力,也明显大于单一的数据湖,大于单一的数据仓库。潮平两岸阔,风正一帆悬。毋庸置疑,湖仓一体代表了未来。
在云厂商和开源技术方案的共同推动之下,2021 年我们将会看到更多“湖仓一体”的实际落地案例。
6、工业智能将迈过发展的初级阶段

工业智能是人工智能技术与工业融合发展形成的,贯穿于设计、生产、管理、服务等工业领域各环节,实现模仿或超越人类感知、分析、决策等能力的技术、方法、产品及应用系统。可以认为,工业智能的本质是通用人工智能技术与工业场景、机理、知识结合,实现设计模式创新、生产智能决策、资源优化配置等创新应用。需要具备自感知、自学习、自执行、 自决策、自适应的能力,以适应变幻不定的工业环境,并完成多样化的工业任务,最终达到提升企业洞察力,提高生产效率或设备产品性能等目的。
过去几年,工业智能经历了基于规则基于统计基于复杂计算的三大阶段。一方面,三大阶段并不是相互替代的关系,专家系统、传统机器学习、知识图谱、前沿机器学习四类技术共存,并不断交织融合;另一方面,技术演进脉络日益清晰,逐步形成了以知识图谱为代表的知识工程和以深度学习为代表的数据科学两大方向。然而,当前工业智能的应用以点状场景居多,普及范围有限,而且还存在许多问题尚未解决,仍处在发展的初级阶段。
7、AI

由于机器学习模型存在“黑盒”属性,所以模型内部的工作原理和模型决策过程难以被理解。但是,AI 的运算结果要解释给人类用户;同时,AI 运行的问题要人类工程师能够定位和解决;另外,AI 流程需要人类监管。
过去几年,我们见证了不透明决策系统的兴起,比如深度神经网络(DNNs)。深度学习模型(如 RNN、BERT)的成功源于高效的学习算法及其巨大的参数空间的结合,一个参数空间可能由数百层和数百万个参数组成,这使得 DNNs 被认为是复杂的黑盒模型。随着算力越来越强,算法模型变得越来越复杂、体积也越来越大,虽然它的能力确实很强,能够帮我们做越来越多的事情,甚至在很多特定任务上表现超过人类,但是我们越来越无法理解这些模型,这是一个很棘手的问题。所谓的可解释性,就是希望寻求对模型工作机理的直接理解,打破人工智能的黑盒子
因此,要打造负责任的人工智能,确保其决策透明,即“我们能够理解并看到人工智能所做的决定”,尤其需要开发可翻译、可解释的人工智能模型,以了解人工智能是如何做出这些决策的。特别是在事关重大的关键领域中,需要对模型全面理解,以此避免出现错误。高准确率和高可解释性的人工智能将有助真正将技术进行广泛、负责任、有效的应用,造福人类生活。
8、认知智能的突破值得期待

如今,随着相关理论和技术的不断革新,AI 在数据、算力和算法“三要素”的支撑下越来越多地走进我们的日常生活。但是,这一系列惊喜的背后却是大多数 AI 在语言理解、视觉场景理解、决策分析等方面的举步维艰:这些技术依然集中在感知层面,即用 AI 模拟人类的听觉、视觉等感知能力,却无法解决推理、规划、联想、创作等复杂的认知智能化任务。
当前的 AI 缺少信息进入“大脑”后的加工、理解和思考,做的只是相对简单的比对和识别,仅仅停留在“感知”阶段,而非“认知”,以感知智能技术为主的 AI 还与人类智能相差甚远。究其原因在于,AI 正面临着制约其向前发展的瓶颈问题:大规模常识知识库与基于认知的逻辑推理。而基于知识图谱、认知推理、逻辑表达的认知图谱,则被越来越多的国内外学者和产业领袖认为是“目前可以突破这一技术瓶颈的可行解决方案之一”。
如果我们把通用人工智能定义为三个条件:一是多任务,能做很多事情,不仅仅是单一的事情;二是具有鲁棒性;三是能够适应多种环境的存在。那么,未来,我们需要将神经科学、认知科学和计算科学进行交叉融合,加强人工智能和脑科学的双向互动,揭示生物智能系统的精细结构和工作机理,构建功能类脑、性能超脑的智能系统,以视觉等功能和典型模式动物作为参照物测试智能水平,为人工智能未来发展探索可行道路。
9、5G&区块链

虽然当前5G+工业互联网仍存在一些问题和挑战,但是5G技术本身也在不断地发展和完善中。5G+工业互联网正在从点状示范应用逐步向面状应用和系统应用发展。这一过程需要产业生态圈内各类企业协同合作,共同发现产业需求、创新应用和交付项目,探索并践行商业模式,以实现5G+工业互联网的良性发展。
但 5G 仍缺乏“杀手级应用”。低延时、高带宽是 5G 的特点和优势,进入 2021 年,我们认为 5G 与“视频”、“云游戏”、“物联网”、“边缘计算”的结合是值得关注的重点。
在当下的 AI 时代,计算产业也离不开智能。有了 5G 技术加持,当前大热的边缘计算将可以显著改善带宽和延时,实现更加智能的计算。毕马威和 IDC 预估,得益于 5G 和边缘计算,除了互联医疗领域,工业制造、智能运输、环境监测、(云)游戏等行业领域也有望在未来两三年内获得显著增长。


10、区块链技术在“新基建”的推动下加速落地

数据已经成为最新的生产要素且首次被写入中央文件,区块链作为新一代的数据库不仅可以确保数据价值也是实现产业附加产值的关键。“新基建”本质上是信息数字化的基础设施,区块链可以在其中充当信任工具起到价值传递的作用。
习近平总书记指出,“区块链技术的集成应用在新的技术革新和产业变革中起着重要作用”。为进一步支撑经济的稳定和高质量发展,我国已重点部署从信息基础设施、融合基础设施、创新基础设施三大方面推进 “新基建”发展。区块链不仅是“新基建”的重要板块,也将充分发挥去中心化、可信协作、隐私保护等特性,从保安全、促协同、助开放和降成本四个方面为“新基建”赋能,为其他领域发展保驾护航。
2020 年区块链已经逐步渗透到中国各个垂直行业,初步形成示范效应,集中体现在政务、民生、金融、供应链等领域,“to G”(包括国企和事业单位)在国内成了区块链行业盈利的主流模式。同时,国家发改委明确地将“区块链”纳入新型基础设施中的信息基础设施。在 COVID-19 的影响下,全球企业都需要加速数字化转型,所以未来区块链将与人工智能、5G 等新基建相关技术一起服务于企业的数字化转型。在 2021 年,我们也将看到更多的“区块链 +”落地案例。
总结:在 IT 信息产业领域,自主可控主要指依靠自身研发设计,全面掌握产品核心技术,进一步实现信息系统从硬件到软件的自主研发、生产、升级、维护的全程可控,力求在 IT 基础设施、基础软件、应用软件及安全产品领域实现全面国产替代。
文摘自:Mark@VanJian万间科技
回复

使用道具 举报

2

主题

7

帖子

13

积分

新手上路

Rank: 1

积分
13
发表于 2025-3-2 06:48:01 | 显示全部楼层
确实不错,顶先
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|科技一站

GMT+8, 2025-4-7 05:30 , Processed in 0.151870 second(s), 32 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表